SUSTAINABLE DESIGN & BUILD

DESIGN AND BUILD REPORT - PLUS ASSETS

DOCUMENT

Document register Sustainable design and build report Worksheet - Lifecycle inventory Study - Digital footprint of an IMOCA Study - LCA 11-2 Molds Scenario analysis - Foils Scenario analysis - Energy Scenario analysis - Packaging Scenario analysis - Metal Scenario Analyis - Transport Scenario analysis - 10m2 Composite panel Worksheet - GHG processing Worksheet - Manufacturing waste analysis Worksheet - Improvement paths Worksheet - 11-2 LCA 2 results Worksheep - End of Life State of the art Internal price of carbon Glossary

PERFORMANCE

BUILD MISSION

To design, build and optimize a new IMOCA, integrating the best knowledge and technology available to achieve the best possible performance on the race track.

TIMELINE

TIMELINE	2019	2020	2021	2022	2023
Launch campaign - Purchase Ex. Hugo Boss (11-1)					
Commission design & build of a new IMOCA (11-2)				Modified dates i	in dark
Design					
Build					
Training (11-1 & 11-2)					
The Ocean Race			Origina	al Dates	New

TOO LATE, OR JUST IN TIME?

*Recalculated 2020 using new method

Figure: Benchmarks and greenhouse gas emission totals, 11th Hour Racing team

DISCLAIMER

The team's LCA results were calculated using MarineShift360.

Backed by 11th Hour Racing as Founding Sponsor, MarineShift360 is a purpose-built marine industry life cycle assessment tool. MarineShift360 is an ISO 14040:2006 & ISO 14044:2006 compliant and certified life cycle assessment tool. LCA results herein are calculated using MarineShift360, which is under development and is currently in beta stage.

No statements regarding accuracy are made and results may change over time as the development of MarineShift360 continues.

ENGAGING SUPPLIERS - RESULTS

16 Months

The team's LCA results were calculated using MarineShift360 beta tool, October 2021

	14		
Mineral Resource	Energy	Water	Marine

Global Warming	Scarcity	consumption	consumption	Eutrophication
tC02e	kg Cue	MJ	m3	kg Ne
553	10,300	15,900,000	7,500	231.7

- **Global Warming Potential (C02e)** The total emission of greenhouse gases was **553 tCO2e** (metric tons of carbon dioxide equivalent). This amount is the equivalent to 2.2million kms driven by an average passenger vehicle, the annual electricity consumption of 100 US homes, or the manufacture of 100 average Renault cars.
- Mineral resource scarcity (Cue) represents the total extraction of minerals on available reserves (Stated as Cue copper equivalent). The mineral resources needed to build 11-2 were 10,300 kgCue, or enough to produce 130 electric cars.
- Energy consumption (MJ) The energy consumed by the production of materials and building process of the IMOCA was 15.9million MJ, this is equivalent to 370 North American homes' energy use for one year.
- Water consumption (m3) represents the total quantity of water used in production of the goods and services associated with the design and build of the IMOCA. The total, 7,500 m3 (7.5 million litres or 2 million US gallons) is the equivalent of three olympic swimming pools, 50,000 baths, or the Annual consumption of 115 people.
- Marine eutrophication (Ne), stated as nitrogen equivalent, is the modification and degradation of an aquatic environment due to excessive supply of nutrients, particularly nitrogen and phosphorus. The impact of the design and build of the IMOCA was 231.7 kgNe.

Contribution of the life cycle stages to environmental impacts and flows

The team's LCA results were calculated using MarineShift360 beta tool, October 2021

IMPACT GHG

Figure: 11.2 GES par sector Calculated with MarineShift360 beta software on October 1st, 2021

Subgroup Plugs Moulds Deck mockup Hull and Deck Structure Misc structure Rudders Keel Foils Sails Boom Mast Outriggers Ruuning rigging Standing rigging Sail trim deckgear

Other deckgear

Other electronics

Deck hydraulics

Keel hydraulics

Navigation

Propulsion

Power

Kg WASTE	%
14,714.12	56.7
6,051.78	23.3
4,343.70	16.7
147.36	0.6
200.97	0.8
320.32	1.2
90.58	0.3
54.01	0.2
22.53	0.1
	14,714.12 6,051.78 4,343.70 147.36 200.97 320.32 90.58 54.01

Figure x: 11.2 waste breakdown by group and subgroup

Figure: Manufacturing resource recovery/waste analysis – Material types to Next use/Destination

The total resource recovery/waste across the system was 25.9 metric tons, of which 7.6t (30%) was retained/Reused; 7,6t (30%) was recycled; 5.7t (22%) went to generate energy; and 4.9t (19%) went to landfill

EOL	Item	Kg	Plan
Retain in house	Bowsprit mould	94	Bowsprit mold is currently retained at CDK, for reuse or recycle
Reuse	Hull/Deck/Keel box molds	3278	Hull and deck molds were reused immediately by IMOCA team MC5,
	Molds, metallic structure	4250	saving a total of 7528 Kilos and 171t C02e
Recycling	EPS plugs	3367	EPS foam from male plugs was mechanically recycled by contractor
	Foils offcuts	1550	11.2 foils were built using the out of plan method which means no tooling was needed. However, 1.5 metric tons of composite waste is generated from this construction process and particularly after the water jet cutting process. The type of waste is a cured CF/epoxy composite (photo) which will be recycled through partnership with Gen2 Carbon
	Deck mock up	42	Built for deconstruction using PEFC certified wood, reused onsite, remainder recycled
	Keel fin	2278	Recycled by contractor
	Keel bulb	110	The manufacturer of the keel bulb reuses a 'generic' mold/cast, reused for each IMOCA contract, it is optimised to within +/- 10mm of the final shape, thereby generating significantly less lead metal waste which is then recycled by the manufacturer.
	Rig, electronics and hydraulics hardware	294	Hydraulic manufacturer data confirmed very low wastage due to optimised initial material use, reuse and recycle inhouse
Waste to energy	CF prepreg offcuts	841	Uncured CF prepreg offouts generated by CDK during the layout process are sent to energy recovery. This EOL option has been recently put in place (Dec 2020). Very few recycling lines <u>exists</u> in France for CF/Epoxy prepreg. Since the build of 11.2, CDK has taken the lead to collaborate with a local company from the building sector for a reuse alternative. The rate of prepreg offouts is estimated to be 30% of the total prepreg layug creating 700kg of waste for an IMOCA build. The potential environmental gain associated to the reuse scenario was evaluated using MS380 and shows a saving of 1.7 tons of CO2
	Prepreg backing	1210	During the build of 11.2, 1.2 metric tons of pre-preg PE plastic backing were generated, (every square meter of prepreg cloth generates twice as backing plastic), for want of a better solution this plastic went to waste-energy. However, the team have subsequently made contact with local specialisit recyclers who can recycle this material with potential savings of 2.35 fC02e
	Vacuum bags	2200	CDK Technologies systematically reuse vacuum consumables debulking bags, economising between 25% plastic
	Tenting plastic – Painting process	350	120 linear metres of single use poly tenting used during the painting process
Landfill	Plugs and moulds CF/GF offcuts	4892	19% or 4.9t of all waste went to landfill, all of which was associated with the plug and mold manufacturing
otal	1	25939	Total resource recovery/waste was 26 metric tons of mixed waste, 7.6t (30%) retained/Reused, 7.6t (30%) Recycled, 5.7t (19%) waste-energy, 4.9t (22%) to landfill

SCENARIOS - ENERGY

Table: Comparing GHG impacts of different electricity sources to build an IMOCA, calculated with MarineShift360 beta software on September 1st, 2021

	Total tC02e	Improvement from EU average tC02e	% improvement from EU average baseline
100% EU grid scenario	651	n/a	n/a
Actual build	553	-98	-15%
100% renewable scenario	441	-210	-32%

Table: Total breakdown digital footprint of the design & build

Digital footprint - 11.2	Design & Build group	Other suppliers	
2019 Research and development	7.69		
2020 Design and build coordination	2.79	0.5	
2021 Design and Build	2.79	1.0	
TOTAL	15 tC02e 3% of total design build footprint		

SCENARIOS - MATERIALS

FIBERS

Figure: Comparing relative GHG impacts of different fibers, Source Michel Marie Calculated with MarineShift360 beta software on October 14th, 2021

SCENARIOS - MATERIALS

Figure: Comparing relative GHG impacts of different metals, Calculated with MarineShift360 beta software on October 1, 2021

IMPROVEMENT TRACKS

Table: Hull and deck molds, impact reduction potential, compared to the full system (IMOCA launched and ready to sail - 553 tC02e) Calculated with MarineShift360 beta software, June 2021

	FEASIBILITY	tC02e	Global Warming (%)	Mineral Resource Scarcity (%)	Energy consumption (%)	Water consumption (%)	Marine Eutrophication (%)
1. Reuse of steel structure at 50%	GOOD	-6.6	-1.2	-2.9	-0.4	-1	-0.2
2. Recycling of production waste (EPS,foams,CF/GF)	POSSIBLE	-2.2	-0.4	-0.1	-0.3	-0.5	-0.1
3. Integrate recycled carbon fibre	POSSIBLE	-23.8	-4.3	-0.3	-4,1	-2.6	-1,6
4. 100% Bioresin	GOOD	-2.7	-0.5	-0.1	-0.3	-0.5	0
5. Local supplier	GOOD	-5.6	-1	-0.1	-0.6	-0.1	0
6. No Plugs	POSSIBLE	-46	-8.3	-4.6	-6.3	-13.5	-13
All improvements tracks		-87	-15.7	-8.1	-12	-18.2	-14.9
Best improvement track Reuse of the molds	EASY	-171	-31	-10	-26	-32	-34

Table: Assessing the GHG impacts of international freight choices, Calculated using GHG protocol, 2021

INTERNATIONAL FREIGHT	Quantity	Mode	km	Weight	Factor	Factor	kgC02e	% Total GHG (553 tC02e)
Boom	1	Air	18500	0.13	ton.km	1.01	2,429	0.44%
Hull and deck molds	3	Road	1500	8	Truck.km	1	4,500	0.81%
Total							6,929	1.25%

Table: Comparing GHG & waste impacts of foil construction methods adjusted for weight, Calculated with MarineShift360 beta software on October 1st, 2021

Set of foils (600 kilos)	Without mold	From mold
GHG impact (kgco2e)	90	96
Percentage waste	371%	524%

The integration of foils in the IMOCA Class has transformed performance in certain conditions, however at +/- 100tC02e a set of foils represent almost 20% of the total greenhouse gas emissions of the design and build.

KEY AREAS

- 1. Timeline & status quo
- 2. Renewable energy
- 3. Design for longevity & reuse
- 4. Breakdown of the build footprint
- 5. Molds
- 6. Alternative materials
- 7. Waste & circularity
- 8. Policy & rules
- 9. Carbon emissions Cap & Internal price

RENEWABLE ENERGY

Ensure manufacturing energy needs are sourced from 100% renewable energy tariffs

Compared to an average European electricity source, **potential reductions of 30%**

Recommendation:

Make this a key point of discussion across your supply chain, and sourcing contracts

PLUGS & MOLDS

50% of an IMOCA 60 design & build GHG emissions relate to plugs and molds

This is an sector that offers relatively quick and significant reductions

Recommendations:

- Avoid the use of male plugs potential gain 2% or 8.3 tC02e
- Build molds for reuse potential gain 50%
- Build molds from recycled materials

Example:

- The mold for 11.2 is already being used by another IMOCA team
- Certain sectors of the composite industry are already using rCF and/or flax as an alternative to virgin carbon fiber in molds

		Thart term - First cycle	Pinai cycle
	Component	Actual	Actual
		Parise	Planna
1	HULL & DECK PLUC		Partial recycle - Host to landfi
	HULL MOULD	Peused	Recycle or weste to ever
	DECK MOULD	neused	Recycle or waste to ener
	DECK MOCK UP:		Recycled
HULL & DOCK	HULL SHELL	Ex.o	Recycle or waste to ener
A DOCTOR DE	RUDDER CASE	Rega	Recycle or waite to ever
	RUDDERS	Real	
	KEEL FOI	Fault	
	KEEL TRALING EDGE	Reute	2
	KEEL BULB		Recy
	KEEL BEARINGS	Reute	Racy
	FOR SET	28.0	
	FOIL BEARINGS	Seco	Regicle or watte to ener
LANGE T	ALE SAUS	Read	Wester to ener
	ROOM	Reut	
	BOOM HARDWARE	Reute	
	MAST	Seuto	
	MAST HARDWARE	Peute	
OUTRICORES	OUTRICCERS	Sauce	
MANING INCOME	ROPE	Perce	Becy
	STANDING RICKING		Watte to ener
	STANDING RICCING HARDWARE		Weste to aner
	PURIERS	Peuce	Recy
ALL TREM	DECK GEAD	Reco	
	WINCHES AND TRANSMESION	Seut	
	STREEMING SYSTEM	Feat	Reg
	LIFE LINES AND PULPIT	Saute	
INVICATION	INSTRUMENTATION	Reute	
	BATTERES	Re.u	1
	CABLES	28.00	
	ELECTRIC MOTORS		
NEX HYDRAULICS	DECK HYDRAULIC SYSTEM	Finan	
INC. INTERACTORS	KEEL HYORAULIC SYSTEM	Seut	
TROPAL COLOR	ENCINE, DRIVE SHAFT AND PROP	Se.u	

Table: End of life plans for IMOCA 11-2 and components

EOL IMOCA COMPONENTS						
End of life plans for IMOCA components and their respective reductions or impacts						
		Short term - First cycle	Final cycle			
SUB - GROUP	Component	Actual	Actual			
		Planned	Planned			
	HULL & DECK PLUG		Partial recycle - Most to landfill			
PLUGS AND MOULDS	HULL MOULD	Reused	Recycle or waste to energy			
	DECK MOULD	Reused	Recycle or waste to energy			
	DECK MOCK UP		Recycled			
HULL & DECK	HULL SHELL	Reuse	Recycle or waste to energy			
RUDDERS	RUDDER CASE	Reuse	Recycle or waste to energy			
	RUDDERS	Reuse	Recycle or waste to energy			
	KEEL FIN	Reuse	Recycle			
KEEL	KEEL TRAILING EDGE	Reuse	Recycle or waste to energy			

CAMPAIGN FOOTPRINT

Table: Full campaign greenhouse gas emissions Calculated using MarineShift360 beta software, October 1st, 2021

Design & Build	11.1 Optimis e d	Launched	.2 & ready to ail	11.2 Optimis e d for TOR		
Inventory	Ex-Hugo Boss plus 4 foils (1 set plus 2 others) 1 set sails + 3 1 set rigging	sail with IN inver 1 set	& ready to 10CA Class ntory foils sails gging	l spare rudder l set foils l set sails l set rigging		
tC02e	220	553		116		
Operations	2019	2020	2021	2022	2023	
tC02e	419	431	500 +/-	750 +/-	750 +/-	

COMPARING KAIROS 2010 REPORT

2010 KAIROS REPORT COMPARISONS

The team used the Kairos 2010 report as a benchmark to indicate key initial research topics, and a reference for potential improvements for the actual build process.

In comparing results between the two reports, it is worth noting the similarities and limitations to such a comparison.

Teams

Both reports focus on the build of an IMOCA for a round the world race, over a similar time period, but the Kairos report included the use phase associated with the operations of the team participating in the Vendee Globe, a three year project. - Comparisons have taken this into account by extracting the use phase.

Molds

Both reports took into account the hull and deck molds, and the fact that both teams passed the molds onto another team to be used again. However, the method of allocating the mold's impact was approached differently by each team:

- Kairos split the impact of the molds, allocating only 50% of the impact to life cycle analysis total (300 tC02e)
- 11th Hour Racing team allocated 100% of the impact of the molds (171 tC02e), to the total calculation of greenhouse gas emissions (553 tC02e¹⁵) and passed the mold on to the next team as zero impact¹⁶

By adding 12.5% (40 metric tons) to include the remaining 50% of the mold, an adjusted assessment for the Kairos IMOCA built in 2010 is estimated to be **343 tC02e**

Database

While both studies did not use the MarineShift360 software, the data used by both studies were sourced from the Ecoinvent database, at ten years apart, certain factors will have changed because of either better data or impact assessment methods to process the data - Without a more detailed comparison of these changes, or re-calculation of one of the studies, we assume the error factor of +/- 10%

COMPARING KAIROS 2010 REPORT

Electricity

One factor that has changed over time is that GHG emissions associated with electricity have significantly reduced. Using the UK as an example it represents a 50% reduction per kWh.

- 2010: 0.496 kgC02e/kWh
- 2021: 0.212 kgC02e/kWh

As energy is used in transforming raw materials, throughout the supply chain and in the design and build process, impacts in 2021 are certainly lower than in 2010.

Inventory

In comparing both studies the final point below, Inventory, is certainly the most significant difference. Construction processes, materials and components have changed over the ten year period.

IMOCA boats in 2021, have replaced relatively simple daggerboards for complex foils, the foils today represent +/- 100 tC02e (20% total).

The overall design and build process has created more complicated deck, hull, mold and components, this has had an impact on material choices, energy used, and build time which has more than doubled: 2010: 20,000-man hours 2021: 40-45.000-man hours.

It is in these last points that we find the main reasons for such an increase in greenhouse gas emissions for an IMOCA build, and the one of the key reasons for doing the comparison in the first place.

Summary

The limitations of comparing the two different reports/systems do not devalue the importance of this opportunity - to have two LCA studies from similar teams ten years apart. Conclusions made with care to context can therefore provide valuable information.

However, regarding the relevance of the Kairos 2010 report, is that not only are their recommendations and improvement tracks still useful today, but maybe most importantly that the Kairos 2010 report establishes the first benchmark for the IMOCA Class Net zero targets, which we will look at in more detail in the next chapter.

TEN YEARS OF PROGRESS & THE PATHWAY TO NET ZERO

TARGETS BASED ON SCIENCE

The footprint of an IMOCA build Aligned to the Paris Agreement

340 tC02e (2010) 553 tC02e (2021)

The RED line shows the pathway to Net Zero by 2050

To create change at this scale we need:

- Efficiency reductions
- Absolute reductions
- A shift to alternative solutions

Year

NEW TARGETS

TARGETS BASED ON SCIENCE

The footprint of an IMOCA build Aligned to the Paris Agreement

340 tC02e

45% reduction by 2030 190 tC02e (Absolute reductions)

Net Zero by 2050 0 tC02e (Ongoing reductions and sequestration of remaining C02e)

Year

FUTURE BUILD AND IMOCA CLASS CHOICES AND NET ZERO TARGETS	FEASIBILTY	DESCRIPTION
	EASY	No barriers
	GOOD	Requires basic planning
	POSSIBLE	Technically possible, certain barriers to be overcome

IMPROVEMENT TRACKS		FEASIBILITY	REDUCTION tC02E	NEW BUILD	NEW BUILD SECONDHAND MOLD	SECONDHAND BOAT ONLY	IMOCA RULES
TEAMS	100% local suppliers, no international transport or airfreight	EASY	7	\checkmark	\checkmark		
	Reuse of the moulds (Once)	EASY	<mark>1</mark> 71		\checkmark		
	Reuse of boat	EASY	553			\checkmark	
SUPPLIERS	Reduce packing through reverse logistics	GOOD	1	\checkmark	\checkmark		
	Improve insulation of main build facility	GOOD	1.8		\checkmark		
	Net zero energy supplier (Boatyard only)	GOOD	36	\checkmark	\checkmark		
IMOCA	Define minimum cloth weight (300 gsqm)	GOOD	0.046				\checkmark
	Prohibit plugs (Female mold only)	GOOD	45.6				\checkmark
	Replace all titanium with stainless steel	GOOD	3.7				\checkmark
A11	Molds - Integrate rCF (+/- 20%)	POSSIBLE	23.6	\checkmark			\checkmark
	Molds - Integrate Flax (+/-20%)	POSSIBLE	16				
	Molds - Substitute all epoxy resin by bioresin	GOOD	2.7	\checkmark			\checkmark
	Use only PEFC certified wood	EASY	0.1	\checkmark			\checkmark
	Built for reuse and longevity (steel structure of moulds	GOOD	6.8	\checkmark			\checkmark
	Collect and mutualise the PE prepreg backing for recycling	EASY	2.9	\checkmark	\checkmark		\checkmark
	Design & Build for four RTW races	GOOD	66.5				\checkmark
TOTAL: Calculated with MarineShift360 beta software on October 1, 2021			tC02e	80	219	553	152
		% TOTAL BUILD		14%	40%	100%	27%

IMAGINE NET ZERO

POLICY CARBON EMISSIONS POLICY INTERNAL PRICE OF CARBON SUSTAINABILITY FUND PATHWAY TO NET ZERO

INTERNAL PRICE ON C02e

A financial mechanism for transition in the marine industry

CARBON EMISSIONS POLICY

Two mechanisms that can play a strong role in the transition are setting:

- A threshold for carbon emissions
- An Internal price for carbon emissions

Threshold

A threshold for carbon emissions for each team, component, boat build or similar unit, is a direct method to define limits for the transformation of raw materials to finished boats, as well as boundaries for the use phase. Based on the most recent LCA or use emissions data, thresholds should be set at a level that is achievable but that incentivizes innovation, and should be updated periodically to reflect progress and new targets.

Internal price for carbon emissions

There is a growing recognition that pricing carbon emissions provides a mechanism, at the global, national company/organization level, to support the pathway to Net Zero. Here is a <u>conceptual model</u> of what it might look like for the sailing sector, and the IMOCA Class